DC conceptual design
UpTime Technology offers a service of conceptual DC design. The basic result is:
Conceptual DC design includes:
- calculation of DC power balance;
- calculation of air flows and heat transfer in DC;
- calculation of noise;
- calculation of resulting energy efficiency of DC;
- choice of best available technologies (cooling supply, energy distribution, backup and uninterrupted power supply, fire fighting, dispatching control and monitoring) based on Customer’s demand;
- layout architectural solutions;
- layout technological solutions;
- layout solutions for auxiliary rooms and rooms for accommodation of personnel;
As required and according to additional request Uptime Technology also offers:
Participation in defending Customer’s technological solutions, as well as assistance during a state expert review of a project.
Organizational planning includes:
- calculation of labor costs for maintenance and operation of DC engineering systems;
- development of payroll plan for maintenance team;
- development of maintenance team position profiles;
Project administration at the stage of execution includes:
- designer’s supervision;
- consulting of prime contractor at the stage of project execution.
- Administration of project sections (cooling supply, reserve and uninterruptable power supply, fire fighting, dispatching control and monitoring);
- Installation supervision of project sections (cooling supply, backup and uninterruptable power supply, fire fighting, dispatching control and monitoring).
Why that is so important?
Data Center (DC) is a specially organized technological site for server and telecommunication equipment, connected to high speed Internet and equipped with means of physical and information protection, fire-fighting and climate control systems, uninterrupted and backup power supply, high-performance equipment and software.
Each DC must be initially designed for continuous operation.
Commonly DC is a protected premise equipped with the following systems:
- main systems:
- Uninterrupted power supply;
- Backup power supply;
- Ventilation and air conditioning;
- SCS;
- Network and computing infrastructure;
- Data storage system;
- supporting systems:
- Monitor and access control;
- Fire fighting;
- Fire and security alarm;
- Monitoring, control and operation system;
- Security system.
DC, as every industrial facility, is an expensive project in terms of initial investment and further facility operation. Thus while designing a DC it is important to give the highest priority to design quality and applied technological solutions. It is even more relevant currently, as the money value is very high and as a rule the market doesn’t give a second chance.
Example, how you can make investment efficient.
In the below mentioned Business Case one might see how two main principles – modularity in construction and development, and implementing of energy-efficient technologies – included on the stage of design allow to obtain an economic effect.
The following Business Case provides for the construction of DC with technology of two alternatives:
- Classic approach – DC is at once constructed to the full capacity. Technology adopts classic process solutions.
- Modular approach – DC is constructed by stages in terms of space and required equipment. Technology adopts modern energy-efficient equipment.
However external electric power for DCs is similar:
DC capacity limit, kW | 1000 |
DC holding capacity, racks | 300 |
Average capacity for one rack, kW | 5 |
Discount factor, % | 10 |
DC growing, Rack per year: | 60 | 120 | 180 | 240 | 300 |
Traditional designed DC: | 1-й год | 2-й год | 3-й год | 4-й год | 5-й год |
Investment per rack: | $40 000 | ||||
Total, DC investment: | $12 000 000 | ||||
Total, operational expenses: | $1 728 000 | $2 160 000 | $2 160 000 | $2 160 000 | $2 160 000 |
DC build stages: | $9 600 000 | $2 400 000 | - | - | - |
Total, expenses: | $11 328 000 | $4 560 000 | $2 160 000 | $2 160 000 | $2 160 000 |
Accrual basis, total expenses: | $11 328 000 | $15 888 000 | $18 048 000 | $20 208 000 | $22 368 000 |
Accrual basis, total expenses considering cost of money: | $18 243 857 | $6 676 296 | $2 874 960 | $2 613 600 | $2 376 000 |
$32 784 713 | |||||
Energy efficient DC: | 1-й год | 2-й год | 3-й год | 4-й год | 5-й год |
Investment per rack: | $60 000 | ||||
Total, DC investment: | $18 000 000 | ||||
Total, operational expenses: | $288 000 | $576 000 | $864 000 | $1 152 000 | $1 440 000 |
DC build stages: | $3 600 000 | $3 600 000 | $3 600 000 | $3 600 000 | $3 600 000 |
Total, expenses: | $3 888 000 | $4 176 000 | $4 464 000 | $4 752 000 | $5 040 000 |
Accrual basis, total expenses: | $3 888 000 | $8 064 000 | $12 528 000 | $17 280 000 | $22 320 000 |
Accrual basis, total expenses considering cost of money: | $6 261 663 | $6 114 082 | $5 941 584 | $5 749 920 | $5 544 000 |
$29 611 248 | |||||
Total savings on the project: | $3 173 465 |
If to consider energy efficiency in another aspect, it is obvious that energy saving allows either to minimize the required capacity limit by reducing investment budget, or to use free capacity for additional racks.
The effect of using released capacity as a result of application of energy-effective technologies is shown below:
Traditional DC | Energy Efficient DC | |||
Power limit of DC: | 1 000 | KW | 1 000 | KW |
Koeff. PUE: | 1,5 | 1,2 | ||
IT-load: | 666,7 | KW | 833,3 | KW |
Power for cooling and other energy expenses: | 333,3 | KW |
166,7 | KW |
If we accept that: | ||||
Average of IT- load per rack: | 5 | KW | 5 | KW |
Number of racks: | 133 | 167 | ||
Average of price per 1 rack per month: | $1 500 | $1 500 | ||
Price cost per 1 KWh: | $0,14 | $0,14 | ||
Income DC per month: | $200 000 | $250 000 |
Also when PUE reduced from 1,5 to 1,2 additionally arises:
The economic effect of reducing the cost of electricity (in case the number of racks are constantly) be: $16800.00
Alternativelywe can estimate the the economic effect of converting the cost to income, namely:
As a result, we get a lower PUE release in the amount of of electrical power: 166,7 KW, which is equivalent to 33 racks with load 5 KW or additional $49500.00 income.